Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guillermina Rivera,^a Hugo Torrens^b* and Sylvain Bernès^c

^aFacultad de Estudios Superiores Cuautitlán, UNAM, Campo 1, 54740 Cuautitlán Izcalli, Estado de México, Mexico, ^bFacultad de Química, UNAM, Ciudad Universitaria, 04510 México DF, Mexico, and ^cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico

Correspondence e-mail: torrens@servidor.unam.mx

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.009 \text{ Å}$ Disorder in main residue R factor = 0.032 wR factor = 0.071 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Illographica Section E [(1, re Reports

[(1,2:5,6-η)-Cycloocta-1,5-diene]bis[2,3,5,6tetrafluoro-4-(trifluoromethyl)benzenethiolato]platinum(II)

The title complex, $[Pt(C_7F_7S)_2(C_8H_{12})]$, has twofold rotation symmetry, with the Pt^{II} ion in an approximately square-planar coordination geometry.

Received 5 October 2006 Accepted 24 October 2006

Comment

We have a long-standing interest in transition metal complexes bearing fluorinated thiolates (Arroyo *et al.*, 2000; Villanueva *et al.*, 2004; Jones *et al.*, 2005), since these compounds are relevant to the study of fluorous biphasic catalytic processes (Barthel-Rosa & Gladysz, 1999) and are often involved in chemical systems promoting C—F bond activation (Murai, 1999; Torrens, 2005). As part of a project to develop metalloligand-type compounds, we have found that the metathetical reactions of [PtCl₂(η^2 , η^2 -COD)], where COD is cycloocta-1,5-diene, with a variety of lead fluorothiolates Pb(SRf)₂ (Rf = C₆F₅, C₆HF₄-4, CH₂C₆H₄F-2 and CH₂CF₃) afford the expected Pt^{II} complexes. Such a reaction was used for the synthesis of the title complex, (I).

A single-crystal X-ray structure analysis of (I) shows that the metal centre lies on a twofold axis (Fig. 1). Considering the mid-points of the C8=C11ⁱ and C11=C8ⁱ double bonds as coordination sites [symmetry code: (i) 1 - x, y, $\frac{3}{2} - z$], the coordination around the Pt^{II} ion approximates a square-planar geometry. The Pt-S bond length (Table 1) is in good agreement with those previously observed for the same thiolate coordinated in a terminal [2.306 (4) and 2.325 (4) Å] or μ_2 bridging mode [2.323 (3) and 2.326 (3) Å] (Rivera et al., 2001). For the closely related complex *trans*- $[Pt(SC_6F_5)_2(SEt_2)_2]$ the Pt-S_{thiolate} bond length is 2.323 (1) Å (Cruz-Garritz et al., 1990). Variations for $Pt-S_{thiolate}$ bonds in this class of compounds seem then to be limited to a small range. The S atoms in (I) have a tetrahedral geometry, as expected for an sp^3 hybridization state. The COD ligand is coordinated, as usual, in an η^2 , η^2 manner and adopts a tub conformation (D_{2d} local symmetry).

© 2006 International Union of Crystallography

All rights reserved

metal-organic papers

The exact C_2 symmetry adopted by (I) and the lack of mirror symmetry allows *cis*-benzene rings to be displaced in order to avoid steric hindrance between CF₃ groups. As a consequence, although the benzene planes are almost parallel, no π - π interactions are present. The packing involves no significant intermolecular interactions.

Experimental

To a solution of $[PtCl_2(\eta^2, \eta^2-COD)]$ (150 mg, 0.4 mmol) in acetone (25 ml) was added a solution of $Pb(SC_6F_4CF_3-4)_2$ (283 mg, 0.4 mmol) in acetone (25 ml). The reaction mixture rapidly turned yellow. The white precipitate formed (PbCl₂) was filtered off and the yellow solution evaporated under vacuum to give (I) as a yellow microcrystalline solid (yield 292 mg, 92%). Single crystals of (I) were obtained by slow evaporation of an acetone solution under a stream of N₂.

Z = 4

 $D_x = 2.221 \text{ Mg m}^{-3}$

Irregular fragment, yellow

2908 reflections with $I > 2\sigma(I)$

 $0.38 \times 0.28 \times 0.20$ mm

3 standard reflections

every 97 reflections

intensity decay: 1%

Mo $K\alpha$ radiation

 $\mu = 6.15 \text{ mm}^-$

T = 298 (1) K

 $R_{\rm int}=0.021$

 $\theta_{\rm max} = 30.0^{\circ}$

Crystal data

 $[Pt(C_7F_7S)_2(C_8H_{12})]$ $M_r = 801.53$ Monoclinic, C2/c a = 18.4374 (15) Å b = 12.9716 (10) Å c = 13.3604 (11) Å $\beta = 131.392$ (3)° V = 2397.1 (3) Å³

Data collection

Bruker P4 diffractometer $2\theta/\omega$ scans Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{min} = 0.180, T_{max} = 0.290$ 4611 measured reflections 3499 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0237P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 4.9564P]
$wR(F^2) = 0.071$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.002$
3499 reflections	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Pt1-S1	2.3245 (11)	Pt1-C11	2.188 (4)
Pt1-C8	2.200 (5)	C8-C11 ⁱ	1.376 (8)
C11-Pt1-C8	81.1 (2)	C11-Pt1-S1	87.63 (15)
C11-Pt1-C11 ⁱ	93.3 (3)	C11-Pt1-S1 ⁱ	163.48 (17)
$C8^{i}-Pt1-C8$	91.4 (3)	$S1^{i}-Pt1-S1$	96.15 (5)
C8-Pt1-S1	158.78 (16)	C1-S1-Pt1	108.63 (13)
$C8^{i}$ -Pt1-S1	90.04 (15)		

Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.

The trifluoromethyl group is highly disordered and was modelled using two positions for each F atom, one set of three F atoms being rotated by $ca 60^\circ$ with respect to the other. Site-occupation factors for

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related by the symmetry code $(1 - x, y, \frac{3}{2} - z)$. The minor component of the disordered CF₃ group has been omitted for clarity.

each component refined to 0.671 (16) for F711/F721/F731 and 0.329 (16) for F712/F722/F732. The geometry for each group was restrained in order to maintain a sensible geometry: C-F = 1.31 (1) Å and $F \cdots F = 2.09$ (2) Å. The F atoms were restrained to approximate isotropic behaviour. H atoms for the COD ligand were positioned geometrically and refined using a riding model, with bond lengths constrained to 0.97 (methylene CH₂) or 0.98 Å (Csp^2-H), and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL-Plus* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL-Plus*; molecular graphics: *SHELXTL-Plus*; software used to prepare material for publication: *SHELXTL-Plus*.

Financial assistance from CONACYT (44494-Q) and DGAPA–UNAM (IN-119305) is gratefully acknowledged. SB is grateful to Benemérita Universidad Autónoma de Puebla (Mexico) for diffractometer time.

References

Arroyo, M., Bernès, S., Richards, R. L., Rius, J. & Torrens, H. (2000). J. Organomet. Chem. 599, 170–177.

- Barthel-Rosa, L. P. & Gladysz, J. A. (1999). Coord. Chem. Rev. 190–192, 587– 605.
- Cruz-Garritz, D., Martin, E., Torrens, H., Mayoh, K. A. & Smith, A. J. (1990). Acta Cryst. C46, 2377–2379.
- Jones, W. D., Garcia, J. & Torrens, H. (2005). Acta Cryst. E61, m2204-m2206. Murai, S. (1999). Activation of Unreactive Bonds and Organic Synthesis, pp.
- 243–269. New York: Springer. Rivera, G., Bernés, S., Rodríguez de Barbarín, C. & Torrens, H. (2001). Inorg.
- *Chem.* **40**, 5575–5580.
- Sheldrick, G. M. (1998). *SHELXTL-Plus*. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Torrens, H. (2005). Coord. Chem. Rev. 249, 1957-1985.
- Villanueva, L., Arroyo, M., Bernès, S. & Torrens, H. (2004). *Chem. Comm.* pp. 1942–1943.