Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Guillermina Rivera, ${ }^{\text {a }}$ Hugo Torrens ${ }^{\text {b }}$ and Sylvain Bernès ${ }^{c}$

${ }^{\mathrm{a}}$ Facultad de Estudios Superiores Cuautitlán, UNAM, Campo 1, 54740 Cuautitlán Izcalli, Estado de México, Mexico, ${ }^{\mathbf{b}}$ Facultad de Química, UNAM, Ciudad Universitaria, 04510 México DF, Mexico, and ${ }^{\text {c }}$ DEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico

Correspondence e-mail:
torrens@servidor.unam.mx

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.032$
$w R$ factor $=0.071$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[(1,2:5,6- $\boldsymbol{\eta})$-Cycloocta-1,5-diene]bis[2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzenethiolato]platinum(II)

The title complex, $\left[\mathrm{Pt}\left(\mathrm{C}_{7} \mathrm{~F}_{7} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$, has twofold rotation symmetry, with the $\mathrm{Pt}^{\mathrm{II}}$ ion in an approximately square-planar coordination geometry.

Comment

We have a long-standing interest in transition metal complexes bearing fluorinated thiolates (Arroyo et al., 2000; Villanueva et al., 2004; Jones et al., 2005), since these compounds are relevant to the study of fluorous biphasic catalytic processes (Barthel-Rosa \& Gladysz, 1999) and are often involved in chemical systems promoting $\mathrm{C}-\mathrm{F}$ bond activation (Murai, 1999; Torrens, 2005). As part of a project to develop metalloligand-type compounds, we have found that the metathetical reactions of $\left[\mathrm{PtCl}_{2}\left(\eta^{2}, \eta^{2}-\mathrm{COD}\right)\right]$, where COD is cycloocta-1,5-diene, with a variety of lead fluorothiolates $\mathrm{Pb}(\mathrm{S} R f)_{2}\left(R f=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{C}_{6} \mathrm{HF}_{4}-4, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-2\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CF}_{3}\right)$ afford the expected $\mathrm{Pt}^{\mathrm{II}}$ complexes. Such a reaction was used for the synthesis of the title complex, (I).

A single-crystal X-ray structure analysis of (I) shows that the metal centre lies on a twofold axis (Fig. 1). Considering the mid-points of the $\mathrm{C} 8=\mathrm{C} 11^{\mathrm{i}}$ and $\mathrm{C} 11=\mathrm{C} 8^{\mathrm{i}}$ double bonds as coordination sites [symmetry code: (i) $1-x, y, \frac{3}{2}-z$], the coordination around the $\mathrm{Pt}^{\mathrm{II}}$ ion approximates a square-planar geometry. The $\mathrm{Pt}-\mathrm{S}$ bond length (Table 1) is in good agreement with those previously observed for the same thiolate coordinated in a terminal $\left[2.306\right.$ (4) and $2.325(4) \AA$ A or $\mu_{2}{ }^{-}$ bridging mode $[2.323$ (3) and 2.326 (3) Å] (Rivera et al., 2001). For the closely related complex trans- $\left[\mathrm{Pt}^{(}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]$ the $\mathrm{Pt}-\mathrm{S}_{\text {thiolate }}$ bond length is 2.323 (1) \AA (Cruz-Garritz et al., 1990). Variations for $\mathrm{Pt}-\mathrm{S}_{\text {thiolate }}$ bonds in this class of compounds seem then to be limited to a small range. The S atoms in (I) have a tetrahedral geometry, as expected for an $s p^{3}$ hybridization state. The COD ligand is coordinated, as usual, in an η^{2}, η^{2} manner and adopts a tub conformation ($D_{2 d}$ local symmetry).

The exact C_{2} symmetry adopted by (I) and the lack of mirror symmetry allows cis-benzene rings to be displaced in order to avoid steric hindrance between CF_{3} groups. As a consequence, although the benzene planes are almost parallel, no $\pi-\pi$ interactions are present. The packing involves no significant intermolecular interactions.

Experimental

To a solution of $\left[\mathrm{PtCl}_{2}\left(\eta^{2}, \eta^{2}-\mathrm{COD}\right)\right](150 \mathrm{mg}, 0.4 \mathrm{mmol})$ in acetone (25 ml) was added a solution of $\mathrm{Pb}\left(\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4\right)_{2}(283 \mathrm{mg}, 0.4 \mathrm{mmol})$ in acetone (25 ml). The reaction mixture rapidly turned yellow. The white precipitate formed $\left(\mathrm{PbCl}_{2}\right)$ was filtered off and the yellow solution evaporated under vacuum to give (I) as a yellow microcrystalline solid (yield $292 \mathrm{mg}, 92 \%$). Single crystals of (I) were obtained by slow evaporation of an acetone solution under a stream of N_{2}.

Crystal data

$\left[\mathrm{Ptt}_{7} \mathrm{C}_{7} \mathrm{~F}_{7} \mathrm{~S}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$
$M_{r}=801.53$
Monoclinic, $C 2 / c$
$a=18.4374$ (15) A
$b=12.9716$ (10) \AA
$c=13.3604$ (11) \AA
$\beta=131.392$ (3) ${ }^{\circ}$
$V=2397.1(3) \AA^{3}$

Data collection

Bruker P4 diffractometer

$2 \theta / \omega$ scans

Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
$T_{\min }=0.180, T_{\max }=0.290$
4611 measured reflections
3499 independent reflections

$Z=4$

$D_{x}=2.221 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=6.15 \mathrm{~mm}^{-1}$
$T=298$ (1) K
Irregular fragment, yellow
$0.38 \times 0.28 \times 0.20 \mathrm{~mm}$

2908 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=30.0^{\circ}$
3 standard reflections
every 97 reflections intensity decay: 1%

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0237 P)^{2}\right. \\
\quad+4.9564 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.78 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.83 \mathrm{e}^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.071$
$S=1.03$
3499 reflections
205 parameters
H-atom parameters constrained

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related by the symmetry code ($1-x, y, \frac{3}{2}-z$). The minor component of the disordered CF_{3} group has been omitted for clarity.
each component refined to 0.671 (16) for F711/F721/F731 and 0.329 (16) for F712/F722/F732. The geometry for each group was restrained in order to maintain a sensible geometry: $\mathrm{C}-\mathrm{F}=$ 1.31 (1) \AA and $F \cdots F=2.09$ (2) \AA. The F atoms were restrained to approximate isotropic behaviour. H atoms for the COD ligand were positioned geometrically and refined using a riding model, with bond lengths constrained to 0.97 (methylene CH_{2}) or $0.98 \AA\left(\mathrm{Csp}^{2}-\mathrm{H}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTLPlus; software used to prepare material for publication: SHELXTLPlus.

Financial assistance from CONACYT (44494-Q) and DGAPA-UNAM (IN-119305) is gratefully acknowledged. SB is grateful to Benemérita Universidad Autónoma de Puebla (Mexico) for diffractometer time.

References

Arroyo, M., Bernès, S., Richards, R. L., Rius, J. \& Torrens, H. (2000). J. Organomet. Chem. 599, 170-177.
Barthel-Rosa, L. P. \& Gladysz, J. A. (1999). Coord. Chem. Rev. 190-192, 587605.

Cruz-Garritz, D., Martin, E., Torrens, H., Mayoh, K. A. \& Smith, A. J. (1990). Acta Cryst. C46, 2377-2379.
Jones, W. D., Garcia, J. \& Torrens, H. (2005). Acta Cryst. E61, m2204-m2206.
Murai, S. (1999). Activation of Unreactive Bonds and Organic Synthesis, pp. 243-269. New York: Springer.
Rivera, G., Bernés, S., Rodríguez de Barbarín, C. \& Torrens, H. (2001). Inorg. Chem. 40, 5575-5580.
Sheldrick, G. M. (1998). SHELXTL-Plus. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Torrens, H. (2005). Coord. Chem. Rev. 249, 1957-1985.
Villanueva, L., Arroyo, M., Bernès, S. \& Torrens, H. (2004). Chem. Comm. pp. 1942-1943.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

